FMS scheduling with knowledge based genetic algorithm approach

نویسندگان

  • Anuj Prakash
  • Felix T. S. Chan
  • S. G. Deshmukh
چکیده

In this paper a complex scheduling problem in flexible manufacturing system (FMS) has been addressed with a novel approach called knowledge based genetic algorithm (KBGA). The literature review indicates that meta-heuristics may be used for combinatorial decision-making problem in FMS and simple genetic algorithm (SGA) is one of the meta-heuristics that has attracted many researchers. This novel approach combines KB (which uses the power of tacit and implicit expert knowledge) and inherent quality of SGA for searching the optima simultaneously. In this novel approach, the knowledge has been used on four different stages of SGA: initialization, selection, crossover, and mutation. Two objective functions known as throughput and mean flow time, have been taken to measure the performance of the FMS. The usefulness of the algorithm has been measured on the basis of number of generations used for achieving better results than SGA. To show the efficacy of the proposed algorithm, a numerical example of scheduling data set has been tested. The KBGA was also tested on 10 different moderate size of data set to show its robustness for large sized problems involving flexibility (that offers multiple options) in FMS. 2010 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A knowledge-based NSGA-II approach for scheduling in virtual manufacturing cells

This paper considers the job scheduling problem in virtual manufacturing cells (VMCs) with the goal of minimizing two objectives namely, makespan and total travelling distance. To solve this problem two algorithms are proposed: traditional non-dominated sorting genetic algorithm (NSGA-II) and knowledge-based non-dominated sorting genetic algorithm (KBNSGA-II). The difference between these algor...

متن کامل

Role of batch size in scheduling optimization of flexible manufacturing system using genetic algorithm

Flexible manufacturing system (FMS) readily addresses the dynamic needs of the customers in terms of variety and quality. At present, there is a need to produce a wide range of quality products in limited time span. On-time delivery of customers’ orders is critical in make-to-order (MTO) manufacturing systems. The completion time of the orders depends on several factors including arrival rate, ...

متن کامل

An Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ

An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...

متن کامل

Staff Scheduling by a Genetic Algorithm

This paper describes a Genetic Algorithms approach to amanpower-scheduling problem arising at a Petrochemical Company. AlthoughGenetic Algorithms have been successfully used for similar problemsin the past, they always had to overcome the limitations of theclassical Genetic Algorithms paradigm in handling the conflict betweenobjectives and constraints. The approach taken here is to use an indir...

متن کامل

An Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ

An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2011